

Copyright

All information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose,
without the express written permission of Televic.

© 2013 Televic NV. All rights reserved.

Document history

Version Author Date Description

1.0 PT 13/03/2014 Initial version : started from UniCOS API

1.1 PT 03/04/2014 Fix set loudspeaker/headphone volume

1.2 PT 16/7/2014 Draft extended microphone status

1.3 PT 14/10/2014 Draft extended microphone status

1.4 DIV 27/10/2015 Add tcp port

1.5 CLY 08/09/2016 Correct syntax of TCCP examples
Added "tim" field in connect command

1.6 DIV 28/10/2020 Correction in 3.2.4.24 (O and C swapped in example string)

D-Cerno_1.6
Communication
TCCP

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 2

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 3

1 Introduction & Scope

1.1 Introduction

1.2 Scope

1.2.1 In scope

1.2.2 Out of scope

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 4

Table of contents

Table of Contents
1 Introduction & Scope .. 3

1.1 Introduction .. 3
1.2 Scope ... 3

1.2.1 In scope ... 3
1.2.2 Out of scope .. 3

2 TCCP Header ... 6
2.1 Introduction .. 6
2.2 Requirements .. 6

2.2.1 Command sets ... 6
2.2.2 States ... 7
2.2.3 Packet .. 7
2.2.4 STX & ETX .. 7
2.2.5 Protocol ID ... 8
2.2.6 Packet types .. 8
2.2.7 Packet ID ... 10
2.2.8 Reply packet .. 10
2.2.9 Body format type & body ... 11
2.2.10 QOS ... 11
2.2.11 Tx type ... 12
2.2.12 Tx id ... 12
2.2.13 Rx type ... 12
2.2.14 Rx id ... 13
2.2.15 Tx Property .. 13
2.2.16 Tx Session ... 13
2.2.17 Room-ID .. 13
2.2.18 Packet length ... 13
2.2.19 Body (ASCII format)... 14
2.2.20 D-Cerno header section usage .. 15

3 D-Cerno Commands .. 17
3.1 Introduction .. 17
3.2 Connection ... 18

Connection is established via tcp port 5011 .. 18
3.2.1 Connect ... 18
3.2.2 Disconnect ... 18
3.2.3 Life check ... 19
3.2.4 Operational commands ... 20

3.2.4.1 Toggle Microphone status ... 20

3.2.4.2 Set Microphone status ... 20

3.2.4.3 Get Microphone status... 21

3.2.4.4 Microphone Status event ... 21

3.2.4.5 Microphone error event ... 22

3.2.4.6 Set Loudspeaker volume ... 23

3.2.4.7 Loudspeaker volume event ... 23

3.2.4.8 Get Loudspeaker volume .. 24

3.2.4.9 Loudspeaker volume reply .. 24

3.2.4.10 Set Headphone volume ... 25

3.2.4.11 Headphone volume event .. 26

3.2.4.12 Get Headphone volume ... 26

3.2.4.13 Headphone volume reply ... 26

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 5

3.2.4.14 Set maximum active microphones ... 27

3.2.4.15 Maximum active microphones event ... 28

3.2.4.16 Get maximum active microphones .. 28

3.2.4.17 Maximum active microphones reply .. 29

3.2.4.18 Set Microphone mode .. 30

3.2.4.19 Microphone mode event .. 31

3.2.4.20 Get Microphone mode ... 32

3.2.4.21 Microphone mode reply ... 32

3.2.4.22 Set recording status ... 33

3.2.4.23 Recording status event .. 34

3.2.4.24 Get recording status .. 34

3.2.4.25 Recording status reply ... 35

3.2.4.26 Get all units .. 36

3.2.4.27 All units reply ... 36

3.2.4.28 Unit presence change event .. 37

List of figures

No table of figures entries found.

List of tables

No table of figures entries found.

Terminology

Name Meaning

References

ID Reference Version Name and meaning

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 6

2 TCCP Header

2.1 Introduction

Most of the TCS systems expose all, or a subset of their functionalities. Be it to support remote configuration by

a technician, real-time control over microphones by means of a PC application by an operator,

starting/stopping of a recording by external parties, etc. In order to provide a high level common interface to

these systems, the Televic Common Communication Protocol (TCCP) has been designed.

As this common protocol is used for several products within the Televic range and will be used for
future developments, it will bundle development efforts in a wide range of areas: SW components,
tools, testing, documentation, ...

This document describes only the communication protocol applied for Televic systems. In order to
develop specific applications, the command description document of the involved system is required.
(e.g. WCAP+ API)

2.2 Requirements

In order to support different kinds of systems, different mediums (TCP, RS232, memory sharing, …),
provide enough flexibility to support future needs, etc … the following set of requirements needs to be
fulfilled:

Protocol requirements Why ?

Format - Field separator Ensure that field name and field value lengths are flexible.

Format - Field
identification

Ensure that fields
- can be interpreted without having to know the position of the field in the
data
- fields can be added or removed without breaking down compatibility

Unique command
identification

Ensure that a sender knows to what outgoing request an incoming reply
belongs.

Independent of the
medium The protocol has to be flexible enough to be used with TCP/IP, RS232, ...

Low and high end systems

Support full functional high end servers as well as low(er) end embedded
systems.
Allow subsets of the protocol.

Textual data and binary
data streams

Textual protocol is easy to develop, debug, test, trace, ...
Binary data is needed to send files, complex data structures, ...

Depending on the restrictions of the sender/receiver the data can support all, or just a subset of the
protocol.

2.2.1 Command sets

We need a basic command set, to be able to set up a basic communication with all of the systems,
this basic set for instance includes "Identify", "Help", "Message", ...

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 7

Next to this basic set of commands, we also need to provide a flexible and extensible format, so it is
possible to add functionality in the future, without having to upgrade the protocol.

System specific functionality has to be encapsulated in a system specific command set, for instance
"SwitchMicrophoneON", "StartVoting", "GetVoteResults", ...

By splitting up the command set into a basic command set and a system specific command set, a
sender/receiver always can understand as much as possible without having to know the details of the
system. If for instance, a sender notifies an event to a receiver, and the receiver doesn't know how to
deal with the event, at least the receiver knows it's an event and the receiver can make the user aware
of this event.

2.2.2 States

A sender and a receiver are either disconnected or connected.

State Description

Disconnected
Only a subset of packet types are allowed
(idy,hlp,con).

Connected All of the packet types are allowed.

2.2.3 Packet

A packet is sent from a sender to a receiver.

A packet starts with a STX (Start of TeXt, and ends with an ETX (End of TeXt):

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

TCCP does not include a transport layer. If data integrity for instance has to be preserved by means of a CRC,

chunk scrambling detection or any other kind, this has to be done in a transport layer.

The length of the packet header between the two colons is not fixed! In the future, fields might be inserted

right in front of the second colon. In order to find the beginning of the body, search for the second colon.

2.2.4 STX & ETX

The STX (0x02) and ETX (0x03) are not meant to support a transport layer in the protocol. These are introduced

to be able to split up sequential packets easily.

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 8

2.2.5 Protocol ID

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The Protocol ID identifies the protocol. This identification has been added in order to support future protocols.

Currently the only supported protocol is the one as described in this document.

Protocol ID Information

02 The protocol described in this document

2.2.6 Packet types

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

This following is the complete list of packet types as defined within the TCCP:

Type Name Sender of the packet Reply State Receiver of the packet

idy Identify packet The sender asks the
receiver to identify itself.

Y Disconnected
Connected

The receiver sends a reply packet with
identification data in its body.

hlp Help packet The sender asks the
receiver for help.

Y Disconnected
Connected

The receiver sends a reply packet with any kind of
information that can help the user in setting up
proper communication with the receiver. Ideally,
the receiver sends the complete list with all of the
supported features (calls, functions, processes,
events) and their parameters, so as to provide the
sender with all of the information needed to control
the receiver.

con Connect packet The sender asks the
receivers to open a
connection.

Y Disconnected The receiver opens a connection and sends a
reply packet to indicate if the connection was
opened properly. Optionally the receiver can first
perform a version check before opening the
communication.

dis Disconnect packet The sender closes the
connection on the receiver.

N Connected The receiver disconnects from the sender and
removes the connection.

cal Call packet The sender calls
functionality on the receiver.

N Connected The receiver will execute the call, but will not send
any reply packet with status information. However,
the call might trigger events on the receiver, which
will be notified by the receiver through event
packets.

fnc Function packet The sender calls a function
on the receiver and waits
for it to return.

Y Connected The receiver executes the function, and sends a
single reply with the return status of the function.

pro Process packet The sender starts a process
on the receiver.

Y Connected The receiver starts the process, and sends reply
packets with status information for as long as the
process is ongoing.

set Setter packet The sender sets the
value(s) of one or more
object properties on the
receiver.

N Connected The receiver sets the property values on the
object.

get Getter packet The sender gets the
value(s) of all of an object’s
properties on the receiver.

Y Connected The receiver sends a reply with the values of all of
the object’s properties.

evt Event packet The sender notifies an
event to the receiver.

N Connected The receiver might be interested in something
which happened at the sender side.

msg Message packet The sender sends a
message to the receiver.

N Connected A message is not meant to have a receiver doing
something. It's a way of telling the user of the
receiving system something.

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 9

dat Data packet The sender sends data to
the receiver.

Y Connected Data packets have to be acknowledged by the
receiver by means of reply packets, in order to
avoid overflows at the receiver.

lfc Life check The sender sends a life
check to verify if the
receiver is still alive.

Y Connected The receiver sends a reply packet to notify that he
is still alive.

rep Positive reply packet The receiver sends a
positive reply to the sender.

N Connected Whenever a receiver receives a packet from a
sender, it might send a positive reply packet to
notify the sender that the packet is handled
successfully.

ren Negative reply
packet

The receiver sends a
negative reply to the
sender.

N Connected Whenever a receiver receives a packet from a
sender, it might send a negative reply packet to
notify the sender that the packet can’t be handled
properly.

reo Ongoing reply
packet

The receiver sends an
ongoing reply to the sender.

N Connected Whenever a receiver receives a packet from a
sender, it might send a reply packet to notify the
sender that the packet was received properly, that
the packet handling was started properly, but that
the packet handling is still ongoing.

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 10

2.2.7 Packet ID

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

Each packet is unique and therefore identified by an ID.

2.2.8 Reply packet

When the receiver receives a packet from the sender, the receiver can reply to the sender with a reply packet.

TCCP defines 3 types of reply packets:

• Positive reply packet

When the receiver successfully handled the packet.

• Negative reply packet

When the receiver wasn’t able to successfully handle the packet.

• Ongoing reply packet

When the receiver successfully started handling the packet, but handling isn’t finished yet. The

receiver can send subsequent ongoing reply packets to the sender to indicate the ongoing state of the

packet.

-> If at one point in time, the receiver successfully finished handling the packet, the receiver will send

a positive reply packet to the sender to mark the end of the packet handling.

-> If at one point in time, the receiver can’t finish handling the packet successfully, the receiver will

send a negative reply packet to the sender to mark the end of the packet handling.

The packet ID of the reply packet has to be the same as the ID in the original packet. This way a sender can

identify to what packet the incoming packet reply relates to.

A reply packet only can include the following fields in the body:

Field Short description

sta The status of the packet handling.

inf Information on the packet state.

[type]

An element of the same type as the type of the original packet.
This element may contain sub-elements.

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 11

2.2.9 Body format type & body

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The body supports different formatting types. The body format type is specified in the packet. A receiver

supports one or more body format types. However, we want to reduce the number of body format types. Only

in very specific situations, one should consider to introduce a new body format type. We want to standardize

as much as possible on as little formats as possible. This being said, we need at least one format. Because of

the flexibility, the hierarchical setup and the huge number of tools and libraries available to support the format,

we've chosen to promote an ASCII XML formatting as default formatting type. For MultiCos we’ve chosen to

use json as formatting type.

The following is a list of supported body format types:

Body format type Short description

00 No body or unknown body

01 ASCII XML format

02 ASCII json format

2.2.10 QOS

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The QOS byte is a priority setting for packet handling at the receiver side. By giving different priorities to the

packets, the receiver will re-order the packets in its packet-queue and will give priority to the packets with the

highest priority.

Lowest priority = ‘0’

Highest priority = ‘9’

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 12

2.2.11 Tx type

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The Tx type specifies the transmitter.

The following is a list of supported Tx types:

Tx types Short description

C Central Unit

D Conference Desk

I Interpreter Desk

O CoCon

N NIOS

2.2.12 Tx id

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The transmitter is identified by a Tx id.

2.2.13 Rx type

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The Rx type specifies the receiver.

The following is a list of supported Rx groups:

Rx types Short description

C Central Unit

D Conference Desk

I Interpreter Desk

O Cocon

N NIOS

8 All except CU

9 All

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 13

2.2.14 Rx id

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The receiver is identified by a Rx id. "99999" is used to address multiple receivers.

2.2.15 Tx Property

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The Tx property indicates if a frame is a single frame, part of a stream or the last frame of a stream.

Tx Property Short description

0 Single frame; Tx session = 0

1 Frame(s) will follow; Tx session is used

9 End of stream; Tx session is used

2.2.16 Tx Session

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The Tx session is used to group a number of frames to a logical sequence (e.g. to transmit large json lists). In

this way a single frame(s) may be transmitted during the transmission of a stream. Also, multiple streams can

be transmitted at the same time.

The Tx Session ranges from 1 uptil 9. Zero is reserved for single frames.

The Tx property is set to 1 or 9 (last frame from the stream)

2.2.17 Room-ID

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

The Room-ID identifies the room you want to address the packet to. For some type of packets, this field will not
be taken into account. (e.g con)

2.2.18 Packet length

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 14

The packet length specifies the total length of the packet expressed in bytes (from STX uptil ETX) , this field will
not be taken into account.

2.2.19 Body (ASCII format)

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

Only ASCII characters are allowed. For XML element names, XML element attribute names, this is no problem,

because they are part of the protocol.

On top of that, all of the attributes content also needs to be ASCII.

For instance, the parameter names of functions and processes have to be in ASCII.

On the other hand, the system might use other encoding for element content.

If text content uses other encoding than ASCII, the encoding needs to be mentioned in the attribute "encoding"

of the element, and the text itself has to be HEX-encoded in order not to interfere with any control characters

in the protocol !

Example of a packet

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

01:idy0001010C00001D00001000001400:

Protocol ID
type = idy

Packet type =
idy

Packet ID

Body format type = 01 (ASCII XML)

QOS =
0

Tx type : C =
entralCoCon

Tx id =
1

Rx type : D = Delegate Unit

Rx id =
1

TxProperty =
0

TxSession = 0

Room-id = 0

Packet length = 1400

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 15

2.2.20 D-Cerno header section usage

S
T
X

Protocol
ID [2]

':'
Type
[3]

ID
[4]

Body
format
type [2]

QO
S[1]

Tx
type
[1]

Tx
id[5]

Rx
type
[1]

Rx
id[5]

Tx
prop
[1]

Tx
session

[1]

Room-
ID [3]

Packet
len[4] ':' Body

E
T
X

For D-Cerno only following header section are used:

• Protocol ID

• Type

• ID

• Body format type

• Body

All the other section may be filled up with ‘0’.

MultiCos Public TCCP Commands

Televic Conference 2020-10-28 16

Packet at a glance for json:
Packet type Packet body Reply packet body

con {

 "typ":"",

 "nam":"",

 "ver":"",

 "inf":"",

 "svr":0,

 "tim":""

}

{

 "sta":"",

 "inf":"",

 "con":{

 "typ":"",

 "nam":"",

 "ver":"",

 "svr":0

 }

}

UniCos Communication 28 Oct 2020 17/37

3 D-Cerno Commands

3.1 Introduction

This document describes the commands needed to develop custom applications on the D-Cerno system.

The Televic Common Communication Protocol (TCCP) description document will be needed in order to

communicate with the involved system.

UniCos Communication 28 Oct 2020 18/37

3.2 Connection

Connection is established via tcp port 5011

3.2.1 Connect

The sender asks the receiver to open a connection. Based on the version data included in the
connection packet, the receiver can check the sender’s version. The sender on his turn can check the
receiver’s version based on the version data in the reply packet.
Sender:
<STX> 02:con<id(4)>020O<tx id(5)>C<rx id(5)>000000000:

{
"typ":"Application",
"nam":"DU",
 "ver":"1.01",
"inf":"",
"svr":0,
"tim":"<time according to ISO 8601>"
}

<ETX>

Note: the time parameter "tim" can also be left empty: ""

Receiver: connection accepted
<STX> 02:rep<id(4)>020C<tx id(5)>O<rx id(5)>000000000:

{
"sta":0,
"inf":"We’re connected … Welcome",

 "con": {
"typ":"D-Cerno",
"nam":"CU",
"ver":"0.09.01",
 "svr":0
}

}
<ETX>

Receiver: connection not accepted
<STX> 02:rep<id(4)>020C<tx id(5)>O<rx id(5)>00:

{
"sta":-1,
"inf":"Not allowed, because …",
"con": {

"typ":"D-Cerno",
"nam":"CU",
 "ver":"0.05.01",
 "svr":0
}

}
<ETX>

3.2.2 Disconnect

The sender tells the receiver to close the established connection.
The id gives the reason of the disconnection. The text field is the description of the id.

UniCos Communication 28 Oct 2020 19/37

Sender:
<STX> 02:dis<id(4)>020C<tx id(5)>O<rx id(5)>000000000:
 {

"id":"01",
"inf":"System shutting down"
"svr":0

}
<ETX>

Disconnect Id’s

ID Description

00 Normal disconnect

01 System shutting down

02 Invalid version

03 To many connections

3.2.3 Life check

The sender sends a life check packet to the receiver to verify if it’s still operational.
Sender:
<STX> 02:lfc<id(4)>020O<tx id(5)>C<rx id(5)>000000000: <ETX>

Receiver:
<STX> 02:rep<id(4)>020C<tx id(5)>O<rx id(5)>000000000:

{
"sta":0,
"inf":"I’m still alive",
"lfc":""
"svr":0

}
<ETX>

UniCos Communication 28 Oct 2020 20/37

3.2.4 Operational commands

3.2.4.1 Toggle Microphone status

This command is used to toggle the microphone status.

Type: set
Name: micstat: micStatus
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

uid serial of the unit String

stat 0 = toggle String

Example: O 00000 → C
<stx>02:set0000029O00000C00000000000000:{"nam":"micstat","uid":"101008d2","stat":"0"}<etx>
Reply: evt: microphone status.
Flow:

3.2.4.2 Set Microphone status

This command is used to toggle the microphone status.

Type: set
Name: smicstat: set microphone status
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

uid serial of the unit

Or (0=All delegates, no chairmen)

String

stat microphone status (0=OFF or 1=ON

or 2=REQUEST or 3=TOGGLE).

When uid=0 only stat=0 is accepted.

String

Example: O 00000 → C
<stx>02:set0000029O00000C00000000000000:{"nam":"smicstat","uid":"101008d2","stat":"0"}<etx>
Reply: evt: microphone status.
Flow:

O

C

O

C

UniCos Communication 28 Oct 2020 21/37

3.2.4.3 Get Microphone status

This command is used to get the status of one or all microphones.

Type: get
Name: gmicstat: set microphone status
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

uid serial of the unit
Or (0=all)

String

Example: O 00000 → C
<stx>02:get0000029O00000C00000000000000:{"nam":"gmicstat","uid":"0"}<etx>
Reply: evt: microphone status for uid=serial.
 evt: all microphones status for uid=0.

Flow:

3.2.4.4 Microphone Status event

This event is sent by the Central Unit indicating that the microphone with given number is on/off/in
request.
Type: evt
Name: micstat: micStatus
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

uid Id of the unit (0=all) String

stat microphone status (0=OFF or 1=ON
or 2=REQUEST)

String

Example: C -> O 00000
<stx>02:evt0000029C00000O00000000000000:{"nam":"micstat","uid":"101008d2","stat":"1"}<etx>
Flow:

O

C

C

O

UniCos Communication 28 Oct 2020 22/37

3.2.4.5 Microphone error event

This event is sent by the Central Unit indicating that an error has occurred during set microphone
status.

Type: evt
Name: err: error
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

id 0xC = Prior pushed
0xD = MaxMic allowed reached
0xE = Wrong mic mode
0xF = Wrong serial number
(0x00000000 or 0xFFFFFFFF)

String

Example: C -> O 00000
<stx>02:evt0000029C00000O00000000000000:{"nam":"err","id":"1"}<etx>
Flow:

C

O

UniCos Communication 28 Oct 2020 23/37

3.2.4.6 Set Loudspeaker volume

Set the loudspeaker volume

Type: set
Name: slsvol: setLsVolume
Sender: Application (O)
Receiver: Central Unit (C)
Response: evt lsvol
Par:

Name Description Type

vol Volume level (0..24) number

Example: O 00000 → C (00000)
<stx>02:set0000020O00000C00000000000000:{"nam":"slsvol","vol":5}<etx>
Reply: <stx>02:evt0000020C00000O00000000000000:{"nam":"lsvol","vol":5}<etx>

Flow:

3.2.4.7 Loudspeaker volume event

The loudspeaker volume has changed

Type: evt
Name: lsvol: lsVolume
Sender: Central Unit (C)
Receiver: Application (O)
Response: /
Par:

Name Description Type

vol Volume level (0..24) Number

Example: C 00000 → O (00000)
<stx>02:evt0000020C00000O00000000000000:{"nam":"lsvol","vol":5}<etx>
Flow:

C

O

C

O

UniCos Communication 28 Oct 2020 24/37

3.2.4.8 Get Loudspeaker volume

Get the loudspeaker volume

Type: get
Name: glsvol: getLsVolume
Sender: Application (O)
Receiver: Central Unit (C)
Response: reply lsvol

Par:-

Example: O 00000 → C (00000)
<stx>02:get0000020O00000C00000000000000:{"nam":"glsvol"}<etx>
Reply: <stx>02:rep0000020C00000O00000000000000:{"nam":"lsvol","vol":5}<etx>

Flow:

3.2.4.9 Loudspeaker volume reply

The loudspeaker volume.

Type: evt
Name: lsvol: lsVolume
Sender: Central Unit (C)
Receiver: Application (O)
Response: /
Par:

Name Description Type

vol Volume level (0..24) Number

Example: C 00000 → O (00000)
<stx>02:rep0000020C00000O00000000000000:{"nam":"lsvol","vol":5}<etx>
Flow:

O

C

C

O

UniCos Communication 28 Oct 2020 25/37

3.2.4.10 Set Headphone volume

Set the headphone volume (floor)

Type: set
Name: shpvol: setHpVolume
Sender: Application (O)
Receiver: Central Unit (C)
Response: evt hpvol
Par:

Name Description Type

vol Volume level (0..24) number

Example: O 00000 → C (00000)
<stx>02:set0000020O00000C00000000000000:{"nam":"shpvol","vol":5}<etx>

Flow:

O

C

UniCos Communication 28 Oct 2020 26/37

3.2.4.11 Headphone volume event

The headphone volume (floor) has changed

Type: evt
Name: hpvol: hpVolume
Sender: Central Unit (C)
Receiver: Application (O)
Response: /
Par:

Name Description Type

vol Volume level (0..24) Number

Example: C 00000 → O (00000)
<stx>02:evt0000020C00000O00000000000000:{"nam":"hpvol","vol":5}<etx>
Flow:

3.2.4.12 Get Headphone volume

Get the headphone volume (floor)

Type: get
Name: ghpvol: getHpVolume
Sender: Application (O)
Receiver: Central Unit (C)
Response: reply hpvol

Par:-

Example: O 00000 → C (00000)
<stx>02:get0000020O00000C00000000000000:{"nam":"ghpvol"}<etx>
Reply: <stx>02:rep0000020C00000O00000000000000:{"nam":"hpvol","vol":5}<etx>

Flow:

3.2.4.13 Headphone volume reply

The headphone volume (floor) has changed

Type: rep
Name: hpvol: hpVolume
Sender: Central Unit (C)
Receiver: Application (O)

C

O

O

C

UniCos Communication 28 Oct 2020 27/37

Response: /
Par:

Name Description Type

vol Volume level (0..24) Number

Example: C 00000 → O (00000)
<stx>02:rep0000020C00000O00000000000000:{"nam":"hpvol","vol":5}<etx>
Flow:

3.2.4.14 Set maximum active microphones

Type: set
Name: smam:setMaxActiveMicrophones
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

mam Number (0..8) number

Reply: short reply

Evt: mam:maxActiveMicrophones
 Par : mam = number

Example: C 00000 → C 00000
<stx>02:set0000020O00000C00000000000000:{"nam":"smam", "mam":8 }<etx>

Flow:

C

O

O

C

UniCos Communication 28 Oct 2020 28/37

3.2.4.15 Maximum active microphones event

Type: evt
Name: mam: MaxActiveMicrophones
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

mam Number (0..8) number

Reply: -

Example: C 00000 → O 00000
<stx>02:evt0000020C00000O00000000000000:{"nam":"mam", "mam":8}<etx>

Flow:

3.2.4.16 Get maximum active microphones

Type: get
Name: gmam:getMaxActiveMicrophones
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

Reply: rep mam:maxActiveMicrophones
 Par : mam = number

Example: O 00000 → C 00000
<stx>02:get0000020C00000O00000000000000:{"nam":"gmam"}<etx>

Flow:

C

O

O

C

UniCos Communication 28 Oct 2020 29/37

3.2.4.17 Maximum active microphones reply

Type: rep
Name: mam: MaxActiveMicrophones
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

mam Number (0..8) number

Reply: -

Example: C 00000 → O 00000
<stx>02:rep0000020C00000O00000000000000:{"nam":"mam", "mam":8}<etx>

Flow:

C

O

UniCos Communication 28 Oct 2020 30/37

3.2.4.18 Set Microphone mode

The following table shows the different microphone modes with the following data:

• Column 1: name of the working mode

• Column 2: name of the option

• Columns 3-4: Parameters to use

Working
modes

Options parameters

mmo mio mat

Direct
Access

 Toggle 1 0 1

 Push 1 0 2

FIFO

 Toggle 2 4 1

 Group 2 7 1

 Vox 2 4 4

Request 0 3 1

Type: set
Name: smmo:setMicrophoneMode
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

mmo Microphone mode:
Operator

Direct speak
Group request

Number
0
1
2

mio Options:
none

Request allowed
Cancel request allowed

Use override

Number
0
1
2
4

mat Activation type:
None

Toggle
Push
Vox

Number
0
1
2
4

Note that the parameter values are bit-wise because in one situation they might be combined. This is
the following :
mio = 3
Meaning that both « Request allowed » and « Cancel Request allowed » are active.

Reply: short reply
Evt: mmo:microphoneMode
 Par : mmo = mode
 mio : microphone options
 mat : microphone activation type
Example: O 00000 → C 00000
<stx>02:set0000020O00000C00000000000000:{"nam":"smmo", "mmo":1, "mio":0, "mat":1}<etx>

Flow:

UniCos Communication 28 Oct 2020 31/37

3.2.4.19 Microphone mode event

The following table shows the different microphone modes with the following data:

• Column 1: name of the working mode

• Column 2: name of the option

• Columns 3-4: Parameters to use

Working
modes

Options parameters

mmo mio mat

Direct
Access

 Toggle 1 0 1

 Push 1 0 2

FIFO

 Toggle 2 4 1

 Group 2 7 1

 Vox 2 4 4

Request 0 3 1

Note that the parameter values are bit-wise because in one situation they might be combined. This is
the following :
mio = 3
Meaning that both « Request allowed » and « Cancel Request allowed » are active.

Type: evt
Name: mmo: Microphone Mode
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

mmo Microphone mode:
Operator

Direct speak
Group request

Number
0
1
2

mio Options:
none

Request allowed
Cancel request allowed

Use override

Number
0
1
2
4

mat Activation type:
None

Toggle
Push
Vox

Number
0
1
2
4

Example: C 00000 → O 00000

O

C

UniCos Communication 28 Oct 2020 32/37

<stx>02:evt0000020C00000O00000000000000:{"nam":"mmo", "mmo":1, "mio":0, "mat":1}<etx>

Flow:

3.2.4.20 Get Microphone mode

Type: get
Name: gmmo:getMicrophoneMode
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

Reply: short reply
rep: mmo:microphoneMode
 Par : mmo = mode
 mio : microphone options
 mat : microphone activation type
Example: O 00000 → C 00000
<stx>02:get0000020O00000C00000000000000:{"nam":"gmmo"}<etx>

Flow:

3.2.4.21 Microphone mode reply

The following table shows the different microphone modes with the following data:

• Column 1: name of the working mode

• Column 2: name of the option

• Columns 3-4: Parameters to use

Working
modes

Options parameters

mmo mio mat

Direct
Access

 Toggle 1 0 1

 Push 1 0 2

FIFO

 Toggle 2 4 1

C

O

O

C

UniCos Communication 28 Oct 2020 33/37

 Group 2 7 1

 Vox 2 4 4

Request 0 3 1

Note that the parameter values are bit-wise because in one situation they might be combined. This is
the following :
mio = 3
Meaning that both « Request allowed » and « Cancel Request allowed » are active.

Type: rep
Name: mmo: Microphone Mode
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

mmo Microphone mode:
Operator

Direct speak
Group request

Number
0
1
2

mio Options:
none

Request allowed
Cancel request allowed

Use override

Number
0
1
2
4

mat Activation type:
None

Toggle
Push
Vox

Number
0
1
2
4

Example: C 00000 → O 00000
<stx>02:rep0000020C00000O00000000000000:{"nam":"mmo", "mmo":1, "mio":0, "mat":1}<etx>

Flow:

3.2.4.22 Set recording status

This command is used to set the recording status.

Type: set
Name: srecstat: recording status
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

stat 1 = stopped
2 = record
3 = paused

number

Example: O 00000 → C
<stx>02:set0000029O00000C00000000000000:{"nam":"srecstat","stat":"1"}<etx>
Reply: evt: recording status

C

O

UniCos Communication 28 Oct 2020 34/37

Flow:

3.2.4.23 Recording status event

This event is sent by the Central Unit indicating the recording status.
Type: evt
Name: recstat: recording status
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

stat 1 = stopped
2 = record
3 = paused

number

Example: C -> O 00000
<stx>02:evt0000029C00000O00000000000000:{"nam":"recstat", "stat":"1"}<etx>
Flow:

3.2.4.24 Get recording status

This command is used to get the recording status.

Type: get
Name: grecstat: recording status
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

Example: O 00000 → C
<stx>02:get0000029O00000C00000000000000:{"nam":"grecstat"}<etx>
Reply: rep: recording status
Flow:

O

C

C

O

O

C

UniCos Communication 28 Oct 2020 35/37

3.2.4.25 Recording status reply

This event is sent by the Central Unit indicating the recording status.

Type: rep
Name: recstat: recording status
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

stat 1 = stopped
2 = record
3 = paused
4 = playing

5 =playing paused

number

Example: C -> O 00000
<stx>02:rep0000029C00000O00000000000000:{"nam":"recstat", "stat":"1"}<etx>
Flow:

C

O

UniCos Communication 28 Oct 2020 36/37

3.2.4.26 Get all units

This command is used to get the serials & microphone status of all the units. It also starts the
transmission of presense - & status events.

Type: get
Name: gunits: get all units
Sender: Application (O)
Receiver: Central Unit (C)
Par:

Name Description Type

Example: O 00000 → C
<stx>02:get0000029O00000C00000000000000:{"nam":"gunits"}<etx>
Reply: unit event

Flow:

3.2.4.27 All units reply

This reply is sent by the Central Unit an contains a list of al the units in the system.

Type: rep
Name: units: all units
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

S Data model collection

Data model:

Name Description Type

Uid Id of the unit String

Stat microphone status (0=OFF or 1=ON
or 2=REQUEST)

String

Example: C -> O 00000
<stx>02:rep0000029C00000O00000000000000:{"nam":"units", "s",
[{"uid":"101008d2","stat":"1"}]}<etx>
Flow:

O

C

C

O

UniCos Communication 28 Oct 2020 37/37

3.2.4.28 Unit presence change event

This event is sent by the Central Unit to indicate that the presence of an unit has changed.

Type: evt
Name: unit: unit presense event
Sender: Central Unit (C)
Receiver: Application (O)
Par:

Name Description Type

Uid Id of the unit (0=all) String

Pres 0: missing unit
1: new unit

String

Example: C -> O 00000
<stx>02:evt0000029C00000O00000000000000:{"nam":"unit","uid":"101008d2","pres":"1"}<etx>
Flow:

C

O

