

VIEWS HOST
API

MARCH 2021, REV 1.13

2

All copyright and industrial rights in this document and in the technical knowledge it contains
are owned by Powersoft S.p.A. and/or the third parties rightfully concerned.

No part of this document nor any data herein shall be disclosed, reproduced, or used for any
purpose whatsoever without the prior written consent of POWERSOFT S.P.A. as foreseen by
the law.

Drawings and specifications are subject to change.

All trademarks and registered trademarks are the property of their respective holders.

3

REVISION HISTORY

Revision Date Description Created by Verified by

1.11 16/03/21 First issue
(rev 1.10 4221- Endpoint)

D. Quarto

1.12 18/03/21 Aligned with ArmonìaPlus 2.1
terminology

D. Quarto

1.13 19/03/21 Changed reading layout D. Quarto

4

1. Scope .. 5

2. Terms, definitions and abbreviations .. 5

3. API ... 5

3.1. Available endpoints .. 6

3.1.1. Zones ... 6

Sources operations in a zone ... 6

Zone level .. 8

Zone mute ... 9

3.1.2. Scene... 10

Current scene parameters ... 10

Active scene ... 11

Scenes List ..12

3.1.3. Project info ... 13

3.1.4. System ON / OFF .. 14

3.2. Websocket server .. 15

5

1. SCOPE

This document describes the API for the Views Host server to control the Powersoft Dynamic Music
Distribution system.

2. TERMS, DEFINITIONS AND ABBREVIATIONS

For the purposes of this document, the following terms and definitions apply.

Client: the software running in the equipment

Server: the Views Host software controlling all the devices of the system. It receives commands from
the clients and communicate with the devices.

Devices: Powersoft Amplifiers models with DSP+D (Mezzo, Otto/Quattro/Duecanali, X, T series)

3. API

The ViewsHost server API are exposed in different port according to the device used as ViewsHost:

- Powersoft ArmoniaPlusService uses port 40469. (If system is running on ArmoniaPlus)
- Powersoft ViewsHostService uses port 80. (If the system is running on PC ViewsHost)
- Powersoft WM Touch uses port 80. (If the system is running on WM Touch)

When the server is busy it will reply to the request with HTTP status 503 until it is available again.

The result of each API consists of a HTTP status and a JSON file contained in the body.
The JSON file consists of the following fields:

• “Code”, containing an error code to be used for debug

• “Message”, containing a descriptive string for debug purposes

• “Result”, the return code related to the endpoint invoked. (This will be present only for HTTP
GET that are supposed to reading infos.)

The “Code” field is used to debug the “Status” of the ViewsHost server. Values can be:

• 0 = Status “OK”

• 1 = Status “DOWN”: at least one device is currently offline or not reachable for some reason

• 2 = Status “DIFFERENT CONFIGURATION”: at least one device has been reset

6

3.1. AVAILABLE ENDPOINTS

3.1.1. ZONES

SOURCES OPERATIONS IN A ZONE

 NOTES

DESCRIPTION Read the active source in a zone
REQUEST TYPE HTTP GET

ENDPOINT /zone/active-source/ZoneID

PARAMETERS • ZoneID: is the ID number of the zone.

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{
 "Code": 0,
 "Result": SourceID,
 "Message": ""
}

 NOTES

DESCRIPTION Set the active source of a zone
REQUEST TYPE HTTP PUT

ENDPOINT /zone/active-source/ZoneID/SourceID

PARAMETERS • ZoneID: is the ID number of the zone.

• SourceID: is the ID number of the source.

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{
 "Code": 0,
 "Message": "SourceID is set active for ZoneID"
}

7

 NOTES

DESCRIPTION Disable the active source of a zone
REQUEST TYPE HTTP DELETE

ENDPOINT /zone/active-source/ZoneID

PARAMETERS • ZoneID: is the ID number of the zone.

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Message": "Is unset source for ZoneID"

}

8

ZONE LEVEL

 NOTES

DESCRIPTION Read the level of a zone
REQUEST TYPE HTTP GET

ENDPOINT /zone/gain/ZoneID

PARAMETERS • ZoneID: is the ID number of the zone.

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Result": ZoneLevel,

 "Message": ""

}

 NOTES

DESCRIPTION Set the level of a zone
REQUEST TYPE HTTP PUT

ENDPOINT /zone/gain/ZoneID/ZoneLevel

PARAMETERS • ZoneID: is the ID number of the zone.

• ZoneLevel: is the level to set in the zone

ZoneLevel is a linear
value between 0 and 1

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Message": "For zone ZoneID is set gain to ZoneLevel"

}

9

ZONE MUTE

 NOTES

DESCRIPTION Read mute status of a zone
REQUEST TYPE HTTP GET

ENDPOINT /zone/mute/ZoneID

PARAMETERS • ZoneID: is the ID number of the zone.

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Result": false,

 "Message": ""

}

false=unmuted
true=muted

 NOTES

DESCRIPTION Set mute status for a zone
REQUEST TYPE HTTP PUT

ENDPOINT /zone/mute/ZoneID/MuteStatus

PARAMETERS • ZoneID: is the ID number of the zone.

• MuteStatus: 0 (Unmuted), 1 (Muted).

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Message": "zone ZoneID is unmuted"

}

or “…is muted”

10

3.1.2. SCENE

CURRENT SCENE PARAMETERS

 NOTES

DESCRIPTION Read current scene parameters
REQUEST TYPE HTTP GET

ENDPOINT /scene

PARAMETERS
RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Result": {

 "IdConfig": "….",

 "Version": 1,

 "scene": {

 "Zones": […

 {

 …

 },

],

 "Id": SceneID,

 "Version": 0,

 "Name": "Scene Name",

 "Index": 0

 }

 },

 "Message": ""

}

Note:

This HTTP request must be performed with the “Accept” header.

The accepted value is: “application/json” to get the json payload of the current scene.

11

ACTIVE SCENE

 NOTES

DESCRIPTION Read active scene ID number
REQUEST TYPE HTTP GET

ENDPOINT /scene/active

PARAMETERS
RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Result": SceneID,

 "Message": ""

}

 NOTES

DESCRIPTION Set the active scene for the system
REQUEST TYPE HTTP PUT

ENDPOINT /scene/active/SceneID

PARAMETERS • SceneID: is the ID number of the scene.

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Message": "Current scene ID is SceneID"

}

12

SCENES LIST

 NOTES

DESCRIPTION Get a list of the scenes and their parameters
REQUEST TYPE HTTP GET

ENDPOINT /scene/list

PARAMETERS
RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Result": {

 "IdConfig": "6a0b0aa3186d49499df355b0d06dbac4",

 "Version": 1,

 "scene": {

 "Zones": […

 {

 …

 }

],

 "Id": SceneID,

 "Version": 0,

 "Name": "Scene Name",

 "Index": 1

 }

 },

 "Message": ""

}

13

3.1.3. PROJECT INFO

 NOTES

DESCRIPTION Read project info
REQUEST TYPE HTTP GET

ENDPOINT /project/info

PARAMETERS
RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{
 "Code": 0,
 "Result": {
 "Name": "Project Name",
 "Contacts": [
 {
 "Name": "Contact Name",
 "Email": "contact@emailaddress.com",
 "Phone": "Contact mobile phone",
 "Company": "Contact Company"
 }
],
 "Company": "Company",
 "Location": "Company Location"
 },
 "Message": ""
}

14

3.1.4. SYSTEM ON / OFF

 NOTES

DESCRIPTION Read the power state of the entire system
REQUEST TYPE HTTP GET

ENDPOINT /power

PARAMETERS
RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Result": true,

 "Message": ""

}

true = system ON
false = system OFF

 NOTES

DESCRIPTION Set the power state for the entire system
REQUEST TYPE HTTP PUT

ENDPOINT /power/PowerState

PARAMETERS • PowerState: 0 (System is OFF), 1 (System is ON)

RESPONSE HTTP Status 200
RESPONSE PAYLOAD
(JSON)

{

 "Code": 0,

 "Message": "Power is set to true"

}

true = system ON
false = system OFF

15

3.2. WEBSOCKET SERVER

The server exposes in a dedicated port a websocket, that can be used by clients for getting unsolicited

notifications or for special operations.

Websocket port is a different port according to the device used as ViewsHost:

- Powersoft ArmoniaPlusService uses port 40470. (If system is running on ArmoniaPlus)
- Powersoft ViewsHostService uses port 80. (If the system is running on PC ViewsHost)
- Powersoft WM Touch uses port 80. (If the system is running on WM Touch)

The connection must be opened by giving a unique ID to identify the client in the querystring URL

used for the connection, having “clientId” as the name of the field.

Moreover, the communication with the websocket can be done using “protocols”, meaning messages

exchanged are strings with the following format:

<protocol_identifier>/<payload> (i.e. PINGPONG/__ping__)

Supported protocols are:

• Generic status update, with protocol_identifier “STATEUPDATE”, in which the payload is a JSON

contains a status change as described in the following paragraph (when doing a connection

with this protocol each client will receive a full JSON of the current system state)

• Online/offline server check, with protocol_identifier “PINGPONG”, in which the payload is sent

by the client is the string “__ping__”, and the server must reply with the string “__pong__”

• Full system status request, with protocol_identifier “STATEREQUEST”; the payload sent by the

client must be the string “request” and the server will reply with the JSON containing the full

current state (the same payload received by a client when connecting with the “STATEUPDATE”

protocol)

Note:

A client, in the query string used to connect to the websocket, must specify the protocols to subscribe;

if a client is not subscribed to a specific protocol it will not receive messages related to that protocol.

16

Example of a possible URL:

ws://<server_ip>:<websocket_port>/?clientId=<guid_client>&protocols=StateUpdate&protocols=PingPong

The connection to the websocket will not be accepted if a valid “ClientID” is not specified and at least

one protocol is specified.

Using the “StateUpdate” protocol the client will receive a JSON object defined below (only changed

status will be available; in case of “Scene” and “Power” if nothing change there will be a “null”, while

for “Zones”, “Sources”, “Speakers” and “SceneKnobs” an empty array will be returned):

{

“Scene”: {

“Current”: {

“Id”: 1,

“IsModified”: false

},

“Scenes”: […

]

},

“Power”: {

“Power”: true

},

“Zones”: […

]

}

